Hierarchical Shrinkage Priors for Dynamic Regressions With Many Predictors

نویسنده

  • Dimitris KOROBILIS
چکیده

This paper builds on a simple unified representation of shrinkage Bayes estimators based on hierarchical Normal-Gamma priors. Various popular penalized least squares estimators for shrinkage and selection in regression models can be recovered using this single hierarchical Bayes formulation. Using 129 U.S. macroeconomic quarterly variables for the period 1959 – 2010 I exhaustively evaluate the forecasting properties of Bayesian shrinkage in regressions with many predictors. Results show that for particular data series hierarchical shrinkage dominates factor model forecasts, and hence is a valuable addition to existing methods for handling large dimensional data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Factor Regression Models in the “Large p, Small n” Paradigm

I discuss Bayesian factor regression models and prediction with very many explanatory variables. Such problems arise in many areas; my motivating applications are in studies of gene expression in functional genomics. I first discuss empirical factor (principal components) regression, and the use of general classes of shrinkage priors, with an example. These models raise foundational questions f...

متن کامل

Bayesian Rank Selection in Multivariate Regression

Estimating the rank of the coefficient matrix is a major challenge in multivariate regression, including vector autoregression (VAR). In this paper, we develop a novel fully Bayesian approach that allows for rank estimation. The key to our approach is reparameterizing the coefficient matrix using its singular value decomposition and conducting Bayesian inference on the decomposed parameters. By...

متن کامل

Hierarchical priors for Bayesian CART shrinkage

The Bayesian CART (classiication and regression tree) approach proposed by Chipman, George and McCulloch (1998) entails putting a prior distribution on the set of all CART models and then using stochastic search to select a model. The main thrust of this paper is to propose a new class of hierarchical priors which enhance the potential of this Bayesian approach. These priors indicate a preferen...

متن کامل

Choice of Hierarchical Priors: Admissibility in Estimation of Normal Means1 Byjames

In hierarchical Bayesian modeling of normal means, it is common to complete the prior specification by choosing a constant prior density for unmodeled hyperparameters (e.g., variances and highest-level means). This common practice often results in an inadequate overall prior, inadequate in the sense that estimators resulting from its use can be inadmissible under quadratic loss. In this paper, ...

متن کامل

Bayesian Models for Structured Sparse Estimation via Set Cover Prior

A number of priors have been recently developed for Bayesian estimation of sparse models. In many applications the variables are simultaneously relevant or irrelevant in groups, and appropriately modeling this correlation is important for improved sample efficiency. Although group sparse priors are also available, most of them are either limited to disjoint groups, or do not infer sparsity at g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011